Money Street News
  • Please enable News ticker from the theme option Panel to display Post


  • Wang, S. Cobalt—its recovery, recycling, and application. JOM 58, 47–50 (2006).

    CAS 

    Google Scholar
     

  • Lipowsky, H. & Arpaci, E. Copper in the Automotive Industry (Wiley, 2007).


    Google Scholar
     

  • Amjad, R. S., Asadollahzadeh, M., Torkaman, R. & Torab-Mostaedi, M. Optimizing the extraction of cobalt ions under response surface methodology and without organic solutions. Can. J. Chem. Eng. 101(6), 3532–3540 (2023).


    Google Scholar
     

  • Badihi, F., Asl, A. H., Asadollahzadeh, M. & Torkaman, R. Applied novel functionality in separation procedure from leaching solution of zinc plant residue by using non-aqueous solvent extraction. Sci. Rep. 13(1), 1146 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, X. et al. Perspectives on cobalt supply through 2030 in the face of changing demand. Environ. Sci. Technol. 54(5), 2985–2993 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Change 39, 305–315 (2016).


    Google Scholar
     

  • Asadollahzadeh, M., Torkaman, R. & Torab-Mostaedi, M. New liquid-liquid extraction column with random packed agitation structure for heavy metal removal and hydrodynamic evaluation. Miners. Eng. 187, 107812 (2022).

    CAS 

    Google Scholar
     

  • Davis, J. R. Copper and Copper Alloys. The Materials Information Society (Springer, 2001).


    Google Scholar
     

  • Swain, B., Shim, H.-W. & Lee, C. G. Extraction/separations of cobalt by supported liquid membrane: A review. Korean Chem. Eng. Res. 57(3), 313–320 (2019).

    CAS 

    Google Scholar
     

  • Sole, K. C., Parker, J., Cole, P. M. & Mooiman, M. B. Flowsheet options for cobalt recovery in african copper–cobalt hydrometallurgy circuits. Miner. Process. Extract. Met. Rev. 40(3), 194–206 (2019).


    Google Scholar
     

  • Li, X., Lei, Z., Qu, J., Li, Z. & Zhang, Q. Separation of copper from cobalt in sulphate solutions by using CaCO3. Sep. Sci. Technol. 51(17), 2772–2779 (2016).

    CAS 

    Google Scholar
     

  • Duan, H. et al. A novel sandwich supported liquid membrane system for simultaneous separation of copper, nickel and cobalt in ammoniacal solution. Sep. Purif. Technol. 173, 323–329 (2017).

    CAS 

    Google Scholar
     

  • Leite, D. D. S., Carvalho, P. L. G., Lemos, L. R., Mageste, A. B. & Rodrigues, G. D. Hydrometallurgical separation of copper and cobalt from lithium-ion batteries using aqueous two-phase systems. Hydrometallurgy 169, 245–252 (2017).

    CAS 

    Google Scholar
     

  • Nathsarma, K. C. & Sarma, P. V. R. B. Processing of ammoniacal solutions containing copper, nickel and cobalt for metal separation. Hydrometallurgy 33(1–2), 197–210 (1993).

    CAS 

    Google Scholar
     

  • Chagnes, A. Simulation of solvent extraction flowsheets by a global model combining physicochemical and engineering approaches—Application to cobalt(II) extraction by D2EHPA. Solv. Extr. Ion Exch. 38, 3–13 (2020).

    CAS 

    Google Scholar
     

  • Torkaman, R., Asadollahzadeh, M., Torab-Mostaedi, M. & Maragheh, M. G. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Sep. Purif. Technol. 186, 318–325 (2017).

    CAS 

    Google Scholar
     

  • Irannajad, M., Afzali, Z. & Haghighi, H. K. Solvent extraction of copper using TBP, D2EHPA and MIBK. Russ. J. Non-Ferr. Met. 59, 605–611 (2019).


    Google Scholar
     

  • Correa, M. M. J. et al. Separation of copper from a leaching solution of printed circuit boards by using solvent extraction with D2EHPA. Braz. J. Chem. Eng. 35(3), 919–930 (2018).

    CAS 

    Google Scholar
     

  • Ichlas, Z. T. & Ibana, D. C. Process development for the direct solvent extraction of nickel and cobalt from nitrate solution: Aluminum, cobalt, and nickel separation using Cyanex 272. Int. J. Miner. Metal. Mater. 24, 37–46 (2017).

    CAS 

    Google Scholar
     

  • Mishra, S. & Devi, N. Extraction of copper(II) from hydrochloric acid solution by Cyanex 921. Hydrometallurgy 107(1–2), 29–33 (2011).

    CAS 

    Google Scholar
     

  • Man, W. D. X., Lee, S. & Senanayake, G. Recovery of metals from chloride leach solutions of anode slimes by solvent extraction. Part II: Recovery of silver and copper with LIX 63 and Alamine 336. Hydrometallurgy 180, 49–57 (2018).


    Google Scholar
     

  • Merad, N. S. & Belkhouche, N.-E. Use of Taguchi’s DOE for process optimization of Co(II) extraction in chloride medium by Aliquat 336. Euro-Mediterr. J. Environ. Integ. 4(32), 1–11 (2019).


    Google Scholar
     

  • Mohanty, A., Devi, N., Sukla, L. B. & Swain, N. Liquid-liquid extraction of Co(II) from nitrate solution using TOA. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2020.01.381 (2020).

    Article 

    Google Scholar
     

  • Asadollahzadeh, M. & Torkaman, R. Extraction of dysprosium from waste neodymium magnet solution with ionic liquids and ultrasound irradiation procedure. Korean J. Chem. Eng. 39(1), 134–145 (2022).

    CAS 

    Google Scholar
     

  • Cheng, C. Y., Barnard, K. R., Zhang, W., Zhu, Z. & Pranolo, Y. Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction. Chin. J. Chem. Eng. 24(2), 237–248 (2016).

    CAS 

    Google Scholar
     

  • Qiu, Y., Yang, L., Huang, S., Ji, Z. & Li, Y. The separation and recovery of copper(II), nickel(II), cobalt(II), zinc(II), and cadmium(II) in a sulfate-based solution using a mixture of Versatic 10 acid and Mextral 984H. Chin. J. Chem. Eng. 25(6), 760–767 (2017).

    CAS 

    Google Scholar
     

  • Fouad, E. A. Separation of copper from aqueous sulfate solutions by mixtures of Cyanex 301 and LIX® 984N. J. Hazard. Mater. 166(2–3), 720–727 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Extraction and separation of cobalt(II), copper(II) and manganese(II) by Cyanex272, PC-88A and their mixtures. Sep. Purif. Technol. 93, 8–14 (2012).

    CAS 

    Google Scholar
     

  • Tran, T. T., Moon, H. S. & Lee, M. S. Recovery of cobalt, nickel and copper compounds from UHT processed spent lithium-ion batteries by hydrometallurgical process. Miner. Process. Extract. Metal. Rev. 43, 453–465 (2022).

    CAS 

    Google Scholar
     

  • Tran, T. T., Liu, Y. & Lee, M. S. Separation of cobalt, nickel, and copper metal using the mixture of HCl in ethylene glycol and Aliquat 336 in kerosene. J. Mater. Res. Technol. 14, 2333–2344 (2021).

    CAS 

    Google Scholar
     

  • Zhu, Z., Zhang, W., Pranolo, Y. & Cheng, C. Y. Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction. Hydrometallurgy 127–128, 1–7 (2012).

    CAS 

    Google Scholar
     

  • Panigrahi, S., Parhi, P. K., Sarangi, K. & Nathsarma, K. C. A study on extraction of copper using LIX 84-I and LIX 622N. Sep. Purif. Technol. 70, 58–62 (2009).

    CAS 

    Google Scholar
     

  • Foltova, S. S., Hoogerstraete, T. V., Banerjee, D. & Binnemans, K. Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep. Purif. Technol. 210, 209–218 (2019).


    Google Scholar
     

  • Flieger, J. et al. Extraction of cobalt (II) using ionic liquid-based bi-phase and three-phase systems without adding any chelating agents with new recycling procedure. Sep. Purif. Technol. 209, 984–989 (2019).

    CAS 

    Google Scholar
     

  • Zante, G., Masmoudi, A., Barillon, R., Trébouet, D. & Boltoeva, M. Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids. J. Ind. Eng. Chem. 82, 269–277 (2020).

    CAS 

    Google Scholar
     

  • Sun, X., Ji, Y., Zhang, L., Chen, J. & Li, D. Separation of cobalt and nickel using inner synergistic extraction from bifunctional ionic liquid extractant (Bif-ILE). J. Hazard. Mater. 182(1–3), 447–452 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Devi, N. Solvent extraction and separation of copper from base metals using bifunctional ionic liquid from sulfate medium. Trans. Nonferrous Met. Soc. China 26(3), 874–881 (2016).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Gameiro, M. L. F., Machado, R. M., Ismael, M. R. C., Reis, M. T. A. & Carvalho, J. M. R. Copper extraction from ammoniacal medium in a pulsed sieve-plate column with LIX 84-I. Hazard. Mater. 183, 165–175 (2010).

    CAS 

    Google Scholar
     

  • Ferreira, A. E. et al. Extraction of copper from acidic leach solution with Acorga M5640 using a pulsed sieve plate column. Hydrometallurgy 104, 66–75 (2010).

    CAS 

    Google Scholar
     

  • Kasaie, M., Bahmanyar, H. & Moosavian, M. A. Investigation of copper extraction from aqueous sulfate solution in a rotating disc contactor. Braz. J. Chem. Eng. 27(5), 866–876 (2016).

    CAS 

    Google Scholar
     

  • Shakib, B., Mostaedi, M. T., Outokesh, M., Torkaman, R. & Asadollahzadeh, M. Experimental study and correlation for mass transfer coefficient in the pilot plant multistage column with the presence of molybdenum. Iran. J. Chem. Chem. Eng. 41(2), 544–554 (2022).

    CAS 

    Google Scholar
     

  • Shakib, B., Torkaman, R., Torab-Mostaedi, M. & Asadollahzadeh, M. Exact hydrodynamic description of pilot plant Oldshue-Rushton contactor: A case study with the introduction of selenium and tellurium into reaction system. Int. J. Environ. Analyt. Chem. 102(16), 4191–4207 (2022).

    CAS 

    Google Scholar
     

  • Shakib, B., Torkaman, R., Torab-Mostaedi, M., Saremi, M. & Asadollahzadeh, M. Performance evaluation during extraction technique in modified rotating disc column: Experimental and mathematical modeling. Chem. Eng. Process 171, 108762 (2022).

    CAS 

    Google Scholar
     

  • Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M. & Saremi, M. Removal of cerium ions in pilot scale agitated column with sieve structure, case study: Evaluation of mass transfer models. Int. J. Heat Mass Trans. 188, 122638 (2022).

    CAS 

    Google Scholar
     

  • Torkaman, R., Saremi, M., Torab-Mostaedi, M. & Asadollahzadeh, M. Characterization of mass transfer study in a Kühni continuous extractor for rare earth processing using axial dispersion and backflow models. Int. J. Heat Mass Trans. 127, 105555 (2021).

    CAS 

    Google Scholar
     

  • Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M. & Saremi, M. Experimental and modeling investigation of cobalt ion extraction in multistage extractor: Efficient evaluation of mass transfer coefficients using forward mixing approach. Int. Commun. Heat Mass Trans. 125, 105359 (2021).

    CAS 

    Google Scholar
     

  • Asadollahzadeh, M., Torkaman, R. & Torab-Mostaedi, M. Continuous extraction of Europium (III) by ionic liquid in the rotating disk column with an asymmetrical structure aimed at the evaluation of reactive mass transfer. ACS Omega 5(30), 18700–18709 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asadollahzadeh, M., Torkaman, R. & Torab-Mostaedi, M. Estimation of droplet size distribution by using maximum entropy programming and population balance equations in pulsed disc-doughnut column. Chem. Eng. Res. Des. 179, 237–248 (2022).

    CAS 

    Google Scholar
     

  • Rahimpour, N., Bahmanyar, H., Hemmati, A. & Asadollahzadeh, M. Investigation of dispersed phase holdup in a Tenova pulsed liquid-liquid extraction column. J. Taiwan Inst. Chem. Eng. 151, 105080 (2023).

    CAS 

    Google Scholar
     

  • Shakib, B., Torkaman, R., Mostaedi, M. T. & Asadollahzadeh, M. The performance of pulsed scale-up column for permeable of selenium and tellurium ions to organic phase, case study: Disc and doughnut structure. Chem. Eng. Process. 157, 108042 (2020).

    CAS 

    Google Scholar
     

  • Marczenko, Z. Separation and Spectrophotometric Determination of Elements (Ellis Horwood, 1976).


    Google Scholar
     

  • Asadollahzadeh, M., Torab-Mostaedi, M. & Torkaman, R. Drop behavior in a pilot plant asymmetric rotating disc extraction column for three various liquid–liquid systems. Chem. Eng. Res. Des. 138, 366–373. https://doi.org/10.1016/j.cherd.2018.03.013 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Asadollahzadeh, M., Torkaman, R. & Torab-Mostaedi, M. Study on the feasibility of using a pilot plant Scheibel extraction column for the extraction and separation of lanthanum and cerium from aqueous solution. Korean J. Chem. Eng. 37, 322–331 (2020).

    CAS 

    Google Scholar
     

  • Asadollahzadeh, M., Torab-Mostaedi, M. & Torkaman, R. Holdup and flooding measurements in an asymmetric rotating disc column. Chem. Eng. Process 109, 97–103 (2016).

    CAS 

    Google Scholar
     

  • Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M. & Safdari, J. A. comparison between drop size distributions derived from the probability distribution functions and maximum entropy principle. Case study; pilot plant Scheibel extraction column. Chem. Eng. Res. Des. 117, 648–658 (2017).

    CAS 

    Google Scholar
     

  • Devi, N. B., Nathsarma, K. C. & Chakravortty, V. Separation and recovery of cobalt(II) and nickel(II) from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272. Hydrometallurgy 49(1–2), 47–61 (1998).

    CAS 

    Google Scholar
     

  • Park, K. H. & Mohapatra, D. Process for cobalt separation and recovery in the presence of nickel from sulphate solutions by Cyanex 272. Metals Mater. Inter. 12, 441–446 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y., Mumford, K. A., Smith, K. H., Li, Z. & Stevens, G. W. Dispersed-phase holdup and characteristic velocity in a pulsed and nonpulsed disk-and-doughnut solvent extraction column. Ind. Chem. Eng. Res. 55(3), 714–721 (2016).

    CAS 

    Google Scholar
     

  • Grabin, T., Smith, K. H., Mumford, K. A., Wang, Y. & Stevens, G. W. Effect of plate wettability on dispersed-phase holdup in a pulsed disc-and-doughnut solvent extraction column. Solvent Ext. Ion Exch. 35(7), 573–585 (2017).

    CAS 

    Google Scholar
     

  • Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M. & Saremi, M. Recycling of zinc ions in disc-donut column considering forward mixing mass transfer, and effects of pulsed and non-pulsed condition. Sci. Rep. 12(1), 1609 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shakib, B., Torkaman, R., Torab-Mostaedi, M. & Asadollahzadeh, M. Revealing mass transfer and hydrodynamic effects in a PRDC column by using the integration of extraction and separation for molybdenum and tungsten ions from aqueous solution. Chem. Pap. 74, 4295–4313 (2020).

    CAS 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    SUBSCRIBE TO OUR NEWSLETTER

    Get our latest downloads and information first. Complete the form below to subscribe to our weekly newsletter.


    No, thank you. I do not want.
    100% secure your website.